3D/2D registration and segmentation of scoliotic vertebrae using statistical models.

نویسندگان

  • Said Benameur
  • Max Mignotte
  • Stefan Parent
  • Hubert Labelle
  • Wafa Skalli
  • Jacques de Guise
چکیده

We propose a new 3D/2D registration method for vertebrae of the scoliotic spine, using two conventional radiographic views (postero-anterior and lateral), and a priori global knowledge of the geometric structure of each vertebra. This geometric knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first modes of variation in Karhunen-Loeve expansion, of the pathological deformations observed on a representative scoliotic vertebra population. The proposed registration method consists of fitting the projections of this deformable template with the preliminary segmented contours of the corresponding vertebra on the two radiographic views. The 3D/2D registration problem is stated as the minimization of a cost function for each vertebra and solved with a gradient descent technique. Registration of the spine is then done vertebra by vertebra. The proposed method efficiently provides accurate 3D reconstruction of each scoliotic vertebra and, consequently, it also provides accurate knowledge of the 3D structure of the whole scoliotic spine. This registration method has been successfully tested on several biplanar radiographic images and validated on 57 scoliotic vertebrae. The validation results reported in this paper demonstrate that the proposed statistical scheme performs better than other conventional 3D reconstruction methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV

In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...

متن کامل

3D Biplanar Reconstruction of Scoliotic Vertebrae Using Statistical Models

This paper presents a new 3D reconstruction method of the scoliotic vertebrae of a spine, using two conventional radiographic views (postero-anterior and lateral), and a global prior knowledge on the geometrical structure of each vertebra. This geometrical knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first ...

متن کامل

3D biplanar statistical reconstruction of scoliotic vertebrae.

A new 3D reconstruction method of scoliotic vertebrae of a spine, using two calibrated conventional radiographic images (postero-anterior and lateral), and a global prior knowledge on the geometrical structure of each vertebra is presented. This geometrical knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first...

متن کامل

Articulated Model Registration of MRI/X-Ray Spine Data

This paper presents a method based on articulated models for the registration of spine data extracted from multimodal medical images of patients with scoliosis. With the ultimate aim being the development of a complete geometrical model of the torso of a scoliotic patient, this work presents a method for the registration of vertebral column data using 3D magnetic resonance images (MRI) acquired...

متن کامل

Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2003